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Abstract

I find the proofs in Stochastic Calculus for Finance to be incredibly dense. The
notation can be difficult to follow and each proof calls upon layers of previous, equally-
dense results. To ensure my own comprehension, I wanted compose a more thorough
treatment of the significant results of Chapter 2.

Definition 0.1 (Expected Value). LetX be a random variable defined on a finite probability
space (Ω,P), where a random variable is a real-valued function defined on Ω, the space of
all possible outcomes of some random experiment. The expected value of X is defined to be

EX =
∑
w∈Ω

X(w)P(w)

In essence, the expected value is the summation of the random variable value times it’s
probability for all outcomes, w within Ω.

We may use the risk-neutral probability measure P, so it is helpful to recall the motivation
behind the risk-neutral probability measure.

Definition 0.2 (Risk-Neutral Probability Measure). Take a simple binomial model of the
future price of some derivative. Let X0 be the starting wealth to be invested in the derivative
and ∆0 be the number of shares purchased at time zero. So at time 0, we have X0 −∆0S0

remaining cash, where S0 is the stock price at time 0. Let r be the money market interest
rate at which we invest our cash. So at time one, the value of our portfolio is

X1 = ∆0S1 + (1 + r)(X0 −∆0S0) = (1 + r)X0 +∆0(S1 − (1 + r)S0)

To determine the price V0 of the derivative, we want to find values of X0,∆0 such that
X1(H) = V1(H) and X1(T ) = V1(T ). So by dividing the above by (r + 1), we want to find

X1 = (1+r)X0+∆0(S1(H)−(1+r)S0) = V1(H) ⇒ X0+∆0(
1

1 + r
S1(H)−S0) =

1

1 + r
V1(H)

Similarly, we want

X0 +∆0(
1

1 + r
S1(T )− S0) =

1

1 + r
V1(T )

To solve the two equations, we will multiply the first by p̃ and the second by q̃ = 1− p̃,
then add the two equations together.

X0 +∆0(
1

1 + r
[p̃S1(H) + q̃S1(T )]− S0) =

1

1 + r
[p̃V1(H) + q̃V1(T )]

Choose p̃ such that

S0 =
1

1 + r
[p̃S1(H) + q̃S1(T )]
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and we see the right hand side of the of the added together equations simplifies to

X0 =
1

1 + r
[p̃V1(H) + q̃V1(T )]

Remember that in a binomial model, S1(H) = uS0 and S1(T ) = dS0 where u, d are the
factor by which the stock price increases or decreases depending on a head or tails. So

S0 =
1

1 + r
[p̃uS0 + (1− p̃)dS0] =

S0

1 + r
[(u− d)p̃+ d]

Solving for p̃, we get p̃ = 1+r−d
u−d

. Similarly, q̃ = u−1−r
u−d

These values are referred to as the risk neutral probabilities because they allow us to
perfectly replicate the performance of a derivative and find the arbitrage-free price of the
derivative.

Definition 0.3 (Conditional Expectation). Now that we have the risk-neutral probabilities,
we see that the stock price at time n is equal to

Sn(w1...wn) =
1

1 + r
[p̃Sn+1(w1...wnH) + q̃Sn+1(w1...wnT )]

Under the risk-neutral probability measure on a binomial pricing model,

ẼSn+1(w1....wn) =
∑
w∈Ω

Sn+1(w1....wn)P̃(w) = p̃Sn+1(w1...wnH) + q̃Sn+1(w1...wnT )

So we can rewrite the stock price as

Sn(w1...wn) =
1

1 + r
ẼnSn+1(w1...wn)

This is called the conditional expectation of Sn+1

Definition 0.4 (discounted asset). A ”discounted asset” is simply an asset denominated
in another asset. By no arbitrage, any asset denominated by another asset is a martingale
under the measure induced by the denominating asset (Theorem 2.4.4)

Definition 0.5 (Martingales). Taking the previous equation, dividing by (1 + r)n gives

Sn

(1 + r)n
= Ẽn[

Sn+1

(1 + r)n+1
]

This equation shows that the conditional expectation of the discounted stock price (Ẽn
Sn+1

(1+r)n+1 )
at time n + 1 is the discounted price of at time n. Processes that satisfy this condition are
called martingales.

In general, for some sequence of random variables M0...Mn, a process is a martingale if

Mn = En[Mn+1],∀n

In essence, a martingale is a process whose expected value remains constant through all
time steps.
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Definition 0.6 (Markov Process). Consider the binomial asset-pricing model. LetX0, X1, ..., XN

be an adapted process. If, for every n between 0 and N − 1 and for every f(x) there exists
a function g(x) (depending on n and f) such that

En[f(Xn+1)] = g(Xn)

then X0, X1, ..., Xn is a Markov process.
By the definition of the left hand side expected value, we must know the result of the first

n coin tosses in order to evaluate the value. If there exists some function g(x) as described,
we need only know the value of Xn to determine the expected value. Thus, the existence of
a function g(x) proves a significant computational advantage.

Problem 1 (2.1). Using Definition 2.1.1, show the following:
(i) If A is an event and Ac denotes its complement, then P(Ac) = 1− P(A)
(ii) If A1, ..., AN is a finite set of events, then

P(
N⋃

n=1

An) ≤
N∑

n=1

P(An)

If the events A1, ..., AN are disjoint, then equality holds for the above.

Solution. (i) We begin by recalling definition 2.1.1:
A finite probability space consists of a sample space Ω and a probability measure P. The
sample space is a nonempty finite set and a probability measure is a function that assigns
to each element w ∈ Ω a number in [0, 1] so that∑

x∈Ω

P(w) = 1

An event is a subset of Ω, and we define the probability of an event A to be

P(A) =
∑
w∈A

P(w)

Let A be an event by the above definition. So A ⊆ Ω and

P(A) =
∑
w∈A

P(w)

Now since Ac is the complement of A, we know that for all w in A, w /∈ Ac and the
reverse holds. So A and Ac are disjoint and since a set and its complement are equal to the
probability space, and the probability of the probability space is one by definition,

P(Ω) = P(A ∪ Ac) = P(A) + P(Ac) = 1 ⇒ P(Ac) = 1− P(A)

(ii) Let A1, ..., AN be a finite set of events. In the case they are disjoint, then

P(A1 ∪ ... ∪ AN) =
∑

w∈A1 cup...∪AN

P(w) =
∑
w∈A1

P(w) + ...
∑
w∈AN

P(w) = P(A1) + ...+ P(AN)
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If not disjoint, then

P(A1 ∪ ... ∪ AN) = P(A1 − ...− AN) ∪ ... ∪ AN)

= P(A1 − ...− AN) + P(A2 − A1 − ...− AN) + .... ≤ P(A1) + ...+ P(AN) =
N∑

n=1

P(An)

□

Problem 2 (2.2). Consider the stock price S3 in Figure 2.3.1.
(i) What is the distribution of S3 under the risk-neutral probabilities p̃ = 1/2, q̃ = 1/2.
(ii) Compute ẼS1, ẼS2, ẼS3. What is the average rate of growth of the stock price under P̃?
(iii) Answer (i) and (ii) again under the actual probabilities p = 2/3, q = 1/3.

Solution.
(i)

P̃ (S3(HHH)) = 1/8
P̃ (S3(HHT,HTH, THH)) = 3/8
P̃ (S3(HTT, THT, TTH)) = 3/8
P̃ (S3(TTT )) = 1/8
(ii)
From Definition 2.3.1,

ẼS1 =
∑

wn+1...wN

p̃#H q̃#TX = (1/2)1(1/2)08 + (1/2)0(1/2)12 = 4 + 1 = 5

ẼS2 =
∑

wn+1...wN

p̃#H q̃#TX = (1/2)2(1/2)016 + (1/2)1(1/2)14 + (1/2)1(1/2)14 + (1/2)0(1/2)21

= 4 + 1 + 1 + .25 = 6.25

ẼS3 =
∑

wn+1...wN

p̃#H q̃#TX = (1/2)3(1/2)032+(1/2)2(1/2)18+(1/2)2(1/2)18+(1/2)2(1/2)18+(1/2)1(1/2)22

+(1/2)1(1/2)22+(1/2)1(1/2)22+(1/2)0(1/2)3.5 = 4+1+1+1+.25+.25+.25+.0625 = 7.8125

So the average rates of growth are

r0 = (6− 4)/4 = 1/2, r1 = (6.25− 5)/5 = .25, r3 = (7.8125− 6.25)/6.25 = .25

(iii)
P̃ (S3(HHH)) = 8/27
P̃ (S3(HHT,HTH, THH)) = 4/9
P̃ (S3(HTT, TTH, THT )) = 2/9
P̃ (S3(TTT )) = 1/27
Then

ẼS1 =
∑

wn+1...wN

p̃#H q̃#TX = (2/3)1(1/3)08 + (2/3)0(1/3)12 = 16/3 + 2/3 = 18/3 = 6
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ẼS2 =
∑

wn+1...wN

p̃#H q̃#TX = (2/3)2(1/3)016+2∗(2/3)(1/3)4+(2/3)0(1/3)21 = 64/9+16/9+1/9 = 9

ẼS3 =
∑

wn+1...wN

p̃#H q̃#TX = (2/3)3(1/3)032+3∗(2/3)2(1/3)18+3∗(2/3)1(1/3)22+(2/3)0(1/3)3.5

= 256/27 + 96/27 + 8/27 + 1/27 = 361/27 ≈ 13.37

Then the average rates of growth are

r0 = (6− 4)/6 = .5, r1 = (9− 6)/6 = .5, r2 = (13.5− 9)/9 = .5

□

Problem 3 (2.3). Show that a convex function of a martingale is a submartingale. In
other words, let M0,M1, ...,MN be a martingale and let φ be a convex function. Show that
φ(M0), ..., φ(MN) is a submartingale.

Solution. By Jensen’s Inequality, we know that

E[φ(X)] ≥ φ(EX)

Since M0, ...,MN is a martingale,
Mn = En[Mn+1]

Then by substitution and the fundamental properties of conditional expectations,

φ(En[Mn+1]) = φ(Mn) ≤ Enφ[Mn+1]

So φ is a submartingale by definition. □

Problem 4 (2.10 (Dividend-paying stock)).

Solution. (i) Take the risk-neutral conditional expectation of the defined wealth process

Ẽn[
Xn+1

(1 + r)n+1
]

To show the dividend-paying wealth process is a martingale, we must show that the condi-
tional expectation equals

Xn

(1 + r)n

So by substituting in the definition of the wealth process,

Ẽn[
Xn+1

(1 + r)n+1
] = Ẽn[

∆nYn+1Sn + (1 + r)(Xn −∆nSn)

(1 + r)n+1
] = Ẽn[

∆nYn+1Sn

(1 + r)n+1
+
(1 + r)(Xn −∆nSn)

(1 + r)n+1
]

=
∆nSn

(1 + r)n+1
Ẽn[Yn+1] +

Xn −∆nSn

(1 + r)n
=

∆nSn

(1 + r)n+1
(up̃+ dq̃) +

Xn −∆nSn

(1 + r)n

=
∆nSn +Xn −∆nSn

(1 + r)n
=

Xn

(1 + r)n
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(ii) Next we show that the risk-neutral pricing formula still applies (i.e. Theorem 2.4.7
holds for the dividend-paying model). Using the definition of the wealth process we see that

∆n =
Xn+1(H)−Xn+1(T )

uSn − dSn

and

Xn = Ẽn[
Xn+1

1 + r
]

Since our goal is to replicate the payoff at time N , we set XN = VN . So

Vn = Xn = Ẽn[
VN

(1 + r)N−n
]

□
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