
Abstract

I find the proofs in Stochastic Calculus for Finance to be incredibly dense. The notation can be difficult to follow and each proof calls upon layers of previous, equallydense results. To ensure my own comprehension, I wanted compose a more thorough treatment of the significant results of Chapter 2.

Definition 0.1 (Expected Value). Let X be a random variable defined on a finite probability space (Ω, \mathbb{P}), where a random variable is a real-valued function defined on Ω, the space of all possible outcomes of some random experiment. The expected value of X is defined to be

$$
\mathbb{E} X=\sum_{w \in \Omega} X(w) \mathbb{P}(w)
$$

In essence, the expected value is the summation of the random variable value times it's probability for all outcomes, w within Ω.

We may use the risk-neutral probability measure \mathbb{P}, so it is helpful to recall the motivation behind the risk-neutral probability measure.

Definition 0.2 (Risk-Neutral Probability Measure). Take a simple binomial model of the future price of some derivative. Let X_{0} be the starting wealth to be invested in the derivative and Δ_{0} be the number of shares purchased at time zero. So at time 0 , we have $X_{0}-\Delta_{0} S_{0}$ remaining cash, where S_{0} is the stock price at time 0 . Let r be the money market interest rate at which we invest our cash. So at time one, the value of our portfolio is

$$
X_{1}=\Delta_{0} S_{1}+(1+r)\left(X_{0}-\Delta_{0} S_{0}\right)=(1+r) X_{0}+\Delta_{0}\left(S_{1}-(1+r) S_{0}\right)
$$

To determine the price V_{0} of the derivative, we want to find values of X_{0}, Δ_{0} such that $X_{1}(H)=V_{1}(H)$ and $X_{1}(T)=V_{1}(T)$. So by dividing the above by $(r+1)$, we want to find
$X_{1}=(1+r) X_{0}+\Delta_{0}\left(S_{1}(H)-(1+r) S_{0}\right)=V_{1}(H) \Rightarrow X_{0}+\Delta_{0}\left(\frac{1}{1+r} S_{1}(H)-S_{0}\right)=\frac{1}{1+r} V_{1}(H)$
Similarly, we want

$$
X_{0}+\Delta_{0}\left(\frac{1}{1+r} S_{1}(T)-S_{0}\right)=\frac{1}{1+r} V_{1}(T)
$$

To solve the two equations, we will multiply the first by \tilde{p} and the second by $\tilde{q}=1-\tilde{p}$, then add the two equations together.

$$
X_{0}+\Delta_{0}\left(\frac{1}{1+r}\left[\tilde{p} S_{1}(H)+\tilde{q} S_{1}(T)\right]-S_{0}\right)=\frac{1}{1+r}\left[\tilde{p} V_{1}(H)+\tilde{q} V_{1}(T)\right]
$$

Choose \tilde{p} such that

$$
S_{0}=\frac{1}{1+r}\left[\tilde{p} S_{1}(H)+\tilde{q} S_{1}(T)\right]
$$

and we see the right hand side of the of the added together equations simplifies to

$$
X_{0}=\frac{1}{1+r}\left[\tilde{p} V_{1}(H)+\tilde{q} V_{1}(T)\right]
$$

Remember that in a binomial model, $S_{1}(H)=u S_{0}$ and $S_{1}(T)=d S_{0}$ where u, d are the factor by which the stock price increases or decreases depending on a head or tails. So

$$
S_{0}=\frac{1}{1+r}\left[\tilde{p} u S_{0}+(1-\tilde{p}) d S_{0}\right]=\frac{S_{0}}{1+r}[(u-d) \tilde{p}+d]
$$

Solving for \tilde{p}, we get $\tilde{p}=\frac{1+r-d}{u-d}$. Similarly, $\tilde{q}=\frac{u-1-r}{u-d}$
These values are referred to as the risk neutral probabilities because they allow us to perfectly replicate the performance of a derivative and find the arbitrage-free price of the derivative.

Definition 0.3 (Conditional Expectation). Now that we have the risk-neutral probabilities, we see that the stock price at time n is equal to

$$
S_{n}\left(w_{1} \ldots w_{n}\right)=\frac{1}{1+r}\left[\tilde{p} S_{n+1}\left(w_{1} \ldots w_{n} H\right)+\tilde{q} S_{n+1}\left(w_{1} \ldots w_{n} T\right)\right]
$$

Under the risk-neutral probability measure on a binomial pricing model,

$$
\tilde{\mathbb{E}} S_{n+1}\left(w_{1} \ldots w_{n}\right)=\sum_{w \in \Omega} S_{n+1}\left(w_{1} \ldots w_{n}\right) \tilde{\mathbb{P}}(w)=\tilde{p} S_{n+1}\left(w_{1} \ldots w_{n} H\right)+\tilde{q} S_{n+1}\left(w_{1} \ldots w_{n} T\right)
$$

So we can rewrite the stock price as

$$
S_{n}\left(w_{1} \ldots w_{n}\right)=\frac{1}{1+r} \tilde{\mathbb{E}}_{n} S_{n+1}\left(w_{1} \ldots w_{n}\right)
$$

This is called the conditional expectation of S_{n+1}
Definition 0.4 (discounted asset). A "discounted asset" is simply an asset denominated in another asset. By no arbitrage, any asset denominated by another asset is a martingale under the measure induced by the denominating asset (Theorem 2.4.4)

Definition 0.5 (Martingales). Taking the previous equation, dividing by $(1+r)^{n}$ gives

$$
\frac{S_{n}}{(1+r)^{n}}=\tilde{\mathbb{E}}_{n}\left[\frac{S_{n+1}}{(1+r)^{n+1}}\right]
$$

This equation shows that the conditional expectation of the discounted stock price $\left(\tilde{\mathbb{E}}_{n} \frac{S_{n+1}}{(1+r)^{n+1}}\right)$ at time $n+1$ is the discounted price of at time n. Processes that satisfy this condition are called martingales.

In general, for some sequence of random variables $M_{0} \ldots M_{n}$, a process is a martingale if

$$
M_{n}=\mathbb{E}_{n}\left[M_{n+1}\right], \forall n
$$

In essence, a martingale is a process whose expected value remains constant through all time steps.

Definition 0.6 (Markov Process). Consider the binomial asset-pricing model. Let $X_{0}, X_{1}, \ldots, X_{N}$ be an adapted process. If, for every n between 0 and $N-1$ and for every $f(x)$ there exists a function $g(x)$ (depending on n and f) such that

$$
\mathbb{E}_{n}\left[f\left(X_{n+1}\right)\right]=g\left(X_{n}\right)
$$

then $X_{0}, X_{1}, \ldots, X_{n}$ is a Markov process.
By the definition of the left hand side expected value, we must know the result of the first n coin tosses in order to evaluate the value. If there exists some function $g(x)$ as described, we need only know the value of X_{n} to determine the expected value. Thus, the existence of a function $g(x)$ proves a significant computational advantage.

Problem 1 (2.1). Using Definition 2.1.1, show the following:
(i) If A is an event and A^{c} denotes its complement, then $\mathbb{P}\left(A^{c}\right)=1-\mathbb{P}(A)$
(ii) If A_{1}, \ldots, A_{N} is a finite set of events, then

$$
\mathbb{P}\left(\bigcup_{n=1}^{N} A_{n}\right) \leq \sum_{n=1}^{N} \mathbb{P}\left(A_{n}\right)
$$

If the events A_{1}, \ldots, A_{N} are disjoint, then equality holds for the above.
Solution. (i) We begin by recalling definition 2.1.1:
A finite probability space consists of a sample space Ω and a probability measure \mathbb{P}. The sample space is a nonempty finite set and a probability measure is a function that assigns to each element $w \in \Omega$ a number in $[0,1]$ so that

$$
\sum_{x \in \Omega} \mathbb{P}(w)=1
$$

An event is a subset of Ω, and we define the probability of an event A to be

$$
\mathbb{P}(A)=\sum_{w \in A} \mathbb{P}(w)
$$

Let A be an event by the above definition. So $A \subseteq \Omega$ and

$$
\mathbb{P}(A)=\sum_{w \in A} \mathbb{P}(w)
$$

Now since A^{c} is the complement of A, we know that for all w in $A, w \notin A^{c}$ and the reverse holds. So A and A^{c} are disjoint and since a set and its complement are equal to the probability space, and the probability of the probability space is one by definition,

$$
\mathbb{P}(\Omega)=\mathbb{P}\left(A \cup A^{c}\right)=\mathbb{P}(A)+\mathbb{P}\left(A^{c}\right)=1 \Rightarrow \mathbb{P}\left(A^{c}\right)=1-\mathbb{P}(A)
$$

(ii) Let A_{1}, \ldots, A_{N} be a finite set of events. In the case they are disjoint, then

$$
\mathbb{P}\left(A_{1} \cup \ldots \cup A_{N}\right)=\sum_{w \in A_{1} \text { cup } \ldots \cup A_{N}} \mathbb{P}(w)=\sum_{w \in A_{1}} \mathbb{P}(w)+\ldots \sum_{w \in A_{N}} \mathbb{P}(w)=\mathbb{P}\left(A_{1}\right)+\ldots+\mathbb{P}\left(A_{N}\right)
$$

If not disjoint, then

$$
\begin{gathered}
\left.\mathbb{P}\left(A_{1} \cup \ldots \cup A_{N}\right)=\mathbb{P}\left(A_{1}-\ldots-A_{N}\right) \cup \ldots \cup A_{N}\right) \\
=\mathbb{P}\left(A_{1}-\ldots-A_{N}\right)+\mathbb{P}\left(A_{2}-A_{1}-\ldots-A_{N}\right)+\ldots \leq \mathbb{P}\left(A_{1}\right)+\ldots+\mathbb{P}\left(A_{N}\right)=\sum_{n=1}^{N} \mathbb{P}\left(A_{n}\right)
\end{gathered}
$$

Problem 2 (2.2). Consider the stock price S_{3} in Figure 2.3.1.
(i) What is the distribution of S_{3} under the risk-neutral probabilities $\tilde{p}=1 / 2, \tilde{q}=1 / 2$.
(ii) Compute $\tilde{E} S_{1}, \tilde{E} S_{2}, \tilde{E} S_{3}$. What is the average rate of growth of the stock price under \tilde{P} ?
(iii) Answer (i) and (ii) again under the actual probabilities $p=2 / 3, q=1 / 3$.

Solution.

(i)
$\tilde{P}\left(S_{3}(H H H)\right)=1 / 8$
$\tilde{P}\left(S_{3}(H H T, H T H, T H H)\right)=3 / 8$
$\tilde{\sim} \tilde{P}^{2}\left(S_{3}(H T T, T H T, T T H)\right)=3 / 8$
$\tilde{P}\left(S_{3}(T T T)\right)=1 / 8$
(ii)

From Definition 2.3.1,

$$
\begin{gathered}
\tilde{\mathbb{E}} S_{1}=\sum_{w_{n+1} \ldots w_{N}} \tilde{p}^{\# H} \tilde{q}^{\# T} X=(1 / 2)^{1}(1 / 2)^{0} 8+(1 / 2)^{0}(1 / 2)^{1} 2=4+1=5 \\
\tilde{\mathbb{E}} S_{2}=\sum_{w_{n+1} \ldots w_{N}} \tilde{p}^{\# H} \tilde{q}^{\# T} X=(1 / 2)^{2}(1 / 2)^{0} 16+(1 / 2)^{1}(1 / 2)^{1} 4+(1 / 2)^{1}(1 / 2)^{1} 4+(1 / 2)^{0}(1 / 2)^{2} 1 \\
=4+1+1+.25=6.25 \\
\tilde{\mathbb{E}} S_{3}=\sum_{w_{n+1} \ldots w_{N}} \tilde{p}^{\# H} \tilde{q}^{\# T} X=(1 / 2)^{3}(1 / 2)^{0} 32+(1 / 2)^{2}(1 / 2)^{1} 8+(1 / 2)^{2}(1 / 2)^{1} 8+(1 / 2)^{2}(1 / 2)^{1} 8+(1 / 2)^{1}(1 / 2)^{2} 2 \\
+(1 / 2)^{1}(1 / 2)^{2} 2+(1 / 2)^{1}(1 / 2)^{2} 2+(1 / 2)^{0}(1 / 2)^{3} .5=4+1+1+1+.25+.25+.25+.0625=7.8125
\end{gathered}
$$

So the average rates of growth are

$$
r_{0}=(6-4) / 4=1 / 2, r_{1}=(6.25-5) / 5=.25, r_{3}=(7.8125-6.25) / 6.25=.25
$$

(iii)
$\tilde{P}\left(S_{3}(H H H)\right)=8 / 27$
$\tilde{P}\left(S_{3}(H H T, H T H, T H H)\right)=4 / 9$
$\tilde{\sim} \tilde{P}^{\tilde{P}}\left(S_{3}(H T T, T T H, T H T)\right)=2 / 9$
$\tilde{P}\left(S_{3}(T T T)\right)=1 / 27$
Then

$$
\tilde{\mathbb{E}} S_{1}=\sum_{w_{n+1} \ldots w_{N}} \tilde{p}^{\# H} \tilde{q}^{\# T} X=(2 / 3)^{1}(1 / 3)^{0} 8+(2 / 3)^{0}(1 / 3)^{1} 2=16 / 3+2 / 3=18 / 3=6
$$

$$
\begin{gathered}
\tilde{\mathbb{E}} S_{2}=\sum_{w_{n+1} \ldots w_{N}} \tilde{p}^{\# H} \tilde{q}^{\# T} X=(2 / 3)^{2}(1 / 3)^{0} 16+2 *(2 / 3)(1 / 3) 4+(2 / 3)^{0}(1 / 3)^{2} 1=64 / 9+16 / 9+1 / 9=9 \\
\tilde{\mathbb{E}} S_{3}=\sum_{w_{n+1} \ldots w_{N}} \tilde{p}^{\# H} \tilde{q}^{\# T} X=(2 / 3)^{3}(1 / 3)^{0} 32+3 *(2 / 3)^{2}(1 / 3)^{1} 8+3 *(2 / 3)^{1}(1 / 3)^{2} 2+(2 / 3)^{0}(1 / 3)^{3} \cdot 5 \\
=256 / 27+96 / 27+8 / 27+1 / 27=361 / 27 \approx 13.37
\end{gathered}
$$

Then the average rates of growth are

$$
r_{0}=(6-4) / 6=.5, r_{1}=(9-6) / 6=.5, r_{2}=(13.5-9) / 9=.5
$$

Problem 3 (2.3). Show that a convex function of a martingale is a submartingale. In other words, let $M_{0}, M_{1}, \ldots, M_{N}$ be a martingale and let φ be a convex function. Show that $\varphi\left(M_{0}\right), \ldots, \varphi\left(M_{N}\right)$ is a submartingale.

Solution. By Jensen's Inequality, we know that

$$
\mathbb{E}[\varphi(X)] \geq \varphi(\mathbb{E} X)
$$

Since M_{0}, \ldots, M_{N} is a martingale,

$$
M_{n}=\mathbb{E}_{n}\left[M_{n+1}\right]
$$

Then by substitution and the fundamental properties of conditional expectations,

$$
\varphi\left(\mathbb{E}_{n}\left[M_{n+1}\right]\right)=\varphi\left(M_{n}\right) \leq \mathbb{E}_{n} \varphi\left[M_{n+1}\right]
$$

So φ is a submartingale by definition.
Problem 4 (2.10 (Dividend-paying stock)).
Solution. (i) Take the risk-neutral conditional expectation of the defined wealth process

$$
\tilde{\mathbb{E}_{n}}\left[\frac{X_{n+1}}{(1+r)^{n+1}}\right]
$$

To show the dividend-paying wealth process is a martingale, we must show that the conditional expectation equals

$$
\frac{X_{n}}{(1+r)^{n}}
$$

So by substituting in the definition of the wealth process,

$$
\begin{gathered}
\tilde{\mathbb{E}_{n}}\left[\frac{X_{n+1}}{(1+r)^{n+1}}\right]=\tilde{\mathbb{E}_{n}}\left[\frac{\Delta_{n} Y_{n+1} S_{n}+(1+r)\left(X_{n}-\Delta_{n} S_{n}\right)}{(1+r)^{n+1}}\right]=\tilde{\mathbb{E}_{n}}\left[\frac{\Delta_{n} Y_{n+1} S_{n}}{(1+r)^{n+1}}+\frac{(1+r)\left(X_{n}-\Delta_{n} S_{n}\right)}{(1+r)^{n+1}}\right] \\
=\frac{\Delta_{n} S_{n}}{(1+r)^{n+1}} \tilde{\mathbb{E}}_{n}\left[Y_{n+1}\right]+\frac{X_{n}-\Delta_{n} S_{n}}{(1+r)^{n}}=\frac{\Delta_{n} S_{n}}{(1+r)^{n+1}}(u \tilde{p}+d \tilde{q})+\frac{X_{n}-\Delta_{n} S_{n}}{(1+r)^{n}} \\
=\frac{\Delta_{n} S_{n}+X_{n}-\Delta_{n} S_{n}}{(1+r)^{n}}=\frac{X_{n}}{(1+r)^{n}}
\end{gathered}
$$

(ii) Next we show that the risk-neutral pricing formula still applies (i.e. Theorem 2.4.7 holds for the dividend-paying model). Using the definition of the wealth process we see that

$$
\Delta_{n}=\frac{X_{n+1}(H)-X_{n+1}(T)}{u S_{n}-d S_{n}}
$$

and

$$
X_{n}=\tilde{\mathbb{E}}_{n}\left[\frac{X_{n+1}}{1+r}\right]
$$

Since our goal is to replicate the payoff at time N, we set $X_{N}=V_{N}$. So

$$
V_{n}=X_{n}=\tilde{\mathbb{E}}_{n}\left[\frac{V_{N}}{(1+r)^{N-n}}\right]
$$

