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1 Motivation

In the real world, we rarely encounter monotonic linear relationships between
variables. Balance sheet projections may depend on inflation, stock market
performance, housing cycles, and more. As such, it is necessary to generalize
regression techniques to include k-many independent variables.

We begin by expressing the general form of an k-dimensional linear equation
with an error term:

y = β1 + β2x2 + β3x3 + ...+ βkxk + ϵ (1)

To represent an individual data value as a linear equation with error, we
write

yi = β1 + β2x2i + β3x3i + ...+ βkxki + ϵi, i = 1, 2, ..., N (2)

Here each variable corresponds to one of N data points and the β are par-
tial regression coefficients which weigh one variable while leaving the others
constant. Or alternatively, we use matrix notation

y = Xβ + ϵ (3)

Written out expressly:
y1
y2
...
yN


N×1

=


1 x21 ... xk1

1 x22 ... xk2

...
1 x2N ... xkN


N×k


β1

β2

...
βk


k×1

+


ϵ1
ϵ2
...
ϵN


N×1

(4)

2 Multivariable Least Squares Regression

Similarly to the bivariate case, the error ϵ for each observation X is equal to
the difference between the model output ŷ and the actual data value y. Least
squares regression minimizes the sum of all ϵ̂i

2. Notice we square the error so
all error is positive and negative/positive errors don’t cancel out.
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The residual sum of squares is given by:

N∑
i=1

ϵ̂2i = ϵ̂T ϵ̂ = (y −Xβ̂)T (y −Xβ̂) = yT y − β̂TXT y − yTXβ̂ + β̂TXTXβ̂

= yT y − 2β̂TXT y + β̂TXTXβ̂

(5)

Differentiating with respect to β and setting equal to 0 allows us to solve for
maxes and mins.

∂

∂β
yT y − 2β̂TXT y + β̂TXTXβ̂ = −2XT y + 2XTXβ̂ = 0 (6)

So
XT y = XTXβ̂ =⇒ β̂ = (XTX)−1XT y (7)

3 Assumptions

As with the bivariate case, there are a few assumptions that must be met to
utilize the least squares regression. Firstly, we should confirm a near linear re-
lationship between the variables. Any error should be normally distributed and
homoskedastic. However, additional dimensions to our independent variables
adds another assumption: No multicollinearity.

Multicollinearity occurs when two or more independent variables are highly
correlated to each other. By computing bivariate correlations between indepen-
dent variables or computing Variance Inflation Factors of the linear regression,
we can identify collinearity and either treat the issue or remove highly correlated
variables from the model.
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